
Static HTML and simple web-pages are already a history now. The novel web applications are

advanced and do a lots of functionalities. Also, the amount of data we show on a page and the

relationship between them is growing large. For an application with a lot of related information

scattered on a page, it is crucial to maintain the consistency between them. For a client, We had to

develop one such app, which is extensively data-rich and we wanted it to be completely swift and

seamless.

We initially were against any javascript frameworks. Even when there were lots of them flourishing in

the market, there are a few factors(like maintainability and additional-syntaxes) that insisted for a

second opinion on going behind a framework.

But the challenge of creating such a data-rich application that consistently maintains state

seamlessly required lots of javascript code and the maintenance of it will be a real complex one.

Premise

Vanilla JavaScript

1

High Performance Single Page
Application with Vue.js

2

A Javascript framework describes a specified structure of how the code should be presented. Mostly

like a code-template, along with some helpers, constructors etc. to solve/simplify a specific problem

or bring your architecture to an order.

If we go with a framework, it provides the state-maintenance out of the box, though not all of them.

Reusability and Code-Maintenance are other two important reasons behind going with a framework.

In addition to these, we also get the following benefits while going with a framework.

Out of these, Angular and EmberJS are having relatively a larger community support and highly used

in many web applications. We ruled out Angular due to its breaking changes release after releases.

The reason we didn’t choose Ember is that it requires a large learning curve. We had to get up to

speed with the application. Eventually we chose to compare ReactJS and VueJS due to their less

learning curve and their Virtual-DOM support.

Going with a Framework

 Component Based

 Strong community for support

 Third party libraries and useful components to deal with things

 Browser extensions for debugging

 Well crafted for single-page applications

We were looking for the following criterion to choose the right Framework.

At a high level, we chose the following frameworks based on the popularity.

The factors

The Initial Candidates

 Light: Should be simple enough and target the problem

 Performance: Should be fast and provide a seamless UX

 Robust: Should be strong enough to scale for larger requirements

 Faster Development: Should be developer friendly

 Quick learning curve: Should be easily learnable

 EmberJS

 Angular

 ReactJS

 VueJS

3

Both of the frameworks share many similarities due its architectural design and developers(React

core developers have contributed a lot to VueJS).

React vs Vue

Common Features

Other Features

 Reactive functional programming — data flows and the propagation of change in view

components. (=observable + observer + schedulers)

 Virtual DOM manipulation instead of HTML/XML DOM.

 Components are Reactive/Stateful and Simple/Stateless.

 Routers for navigation with component constraints/filters/props.

 Native and custom directive support for HTML or JSX as attributes.

 Global state management is highly scalable with Vuex(Vue)/Redux(React).

 Functionalities like Data/Event bindings, Mixins, Filters and Helpers .

 Un-opinionated app structure with build systems.

 Tree shaking support with Webpacks 2.

 Karma as test framework along with Mocha/Jest

 REST API support and XHR request handler with axios.

 Chrome dev-addon tools for debugging Vue/React and also for Vuex/Redux.

 VS Code extensions for both React and Vue dev coding.

 Runtime performance are exceptional and comparatively fast. Refer the benchmarks

 Component Rendering is more optimized in Vue compare to React due its intelligent state

listeners and computed/watch methods.

 Size of React framework is higher than Vue due to its rich set of directive and functions. But,

Vue does not have rich set of directives to keep the lib size (~30KB gzipped) small and clean.

Please check the Vue creator’s reply for one of the feature request.

 Adoption of React is quite difficult for a HTML developer/designers. It is kind of a full-stack

framework/library, everything is just JavaScript. ex: JSX, ES6, CSS loading and etc. But, Vue is

simple and you can use HTML, Scoped CSS, ES6 and JSX within same components.

 Community support is higher for React and Facebook is backing it. VueJs is created by Evan

You and it is slowly becoming famous with community due to its performance and pros.

 Popularity of React (stars/forks) and contributors are higher than Vue (stars/forks)

contributors.

4

7. Hybrid App is possible with React Native (React) and Weex (Vue)

Documentation is one of the plus for Vue compare to React docs

Licensing — Both Vue and React are licensed under MIT. Please check the links for the
permissions, limitations and conditions. However React earlier was under BSD + Patent license.

8.
9.

A Sample Code

class extends

 {

 render() {

 return (

 <div>

 {this.props.name}

 </div>

);

 }

}

.render(

 < name= />,

 mountNode

);

HelloMessage
React.Component

Hello

ReactDOM
HelloMessage "World!"

<div id=" ">

 {{ message }}

</div>

 app = new ({

 el: '#app',

 data: {

 }

})

app

var Vue

message: 'Hello World!'

React Vue JS

We can clearly see that the Vue code is very simple and more readable than React. Additionally, to
work with reactjs, we had to learn a new templating language called JSX, whereas with VueJS, its all
plain HTML and Javascript.

5

We also went ahead and explored advanced concepts in both React and VueJS and have found that

the VueJS continuously grabbed our attention. For example, the concept of Async-Components with

vue-router had solved one of out loading-time issue considerably.

With Async-Components and vue-router, we were able to load the konva editor asynchronously which

significantly reduce the initial app.js size and made the component load lazily only when needed. And

the wow-factor here is the amount of change involved in this optimization is just a line of code as

shown below.

In the router file, we had to change the line

From

For our login-page whose app.js size was initially 9.5 MB and took longer load. The problem we

identified here is the synchronous loading of Konva editor that bloated up the initial app.js file.

TO

Before using Async-Components and vue-router

Vue Async Components with vue-router

import konvaEditor from './views/editor'

const konvaEditor = () => import('./views/editor')

6

HTML5 contenteditable is another interesting feature we had tried with VueJS. When a made a

contenteditable field as reactive with VueJS, we started observing it to behave strange.

We started noticing inconsistent issues like,

All these issues are happening because of the same reason, and Evan You, the creator of Vue.js

explains it this way

““when you use {{ }} bindings, Vue will attempt to diff the text nodes - which will likely be made out of

sync by contenteditable because how browsers handle/split the text nodes are completely

unpredictable.””

So, to solve this and make contenteditable fit properly with Vuejs reactive components, we had to

use v-html and v-text directives to render the content within contenteditable node. This perfectly

worked well using v-html.

While using v-html for user input fields, it is the developers responsibility to make sure to sanitize the

input from user to avoid XSS attacks.

Here it is obvious that the app.js file size has reduced from 9.5MB to 7.5MB which is approximately 21%.

After using Async-Components and vue-router

Vue.js and HTML5 contenteditable

 duplicate content of the input value with both upper and lower case texts

 input values are non reactive, i.e., not changing to upper-case

 weird behavior on input with line breaks

7

With VueJS, we have built a complete app which is performant, robust, functional, data-rich and the

whole development went so smooth. Thus choosing Vue js for our application, developer

productivity went up and so their happiness and in turn our customers are happy.

Conclusion

